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Figure 5.10: Plots of the four most dominant kCCA loadings when plotted onto anatomical
brains using MNE software. These plots show neural activities measured in fMRI and MEG for
similar neural concepts. Although kCCA does not consider geometry in its learning algorithm,
several spatial correlations can be seen. Several activities, however, only appear in one scanning
modality.

How are similar neural concepts represented in fMRI and MEG?

The kCCA algorithm learns loadings that project the fMRI and MEG data to a lower di-
mensional representation such that the two projections are maximally correlated. These learned
loadings have a physical interpretation and can be mapped onto the geometry of the brain. Vi-
sualizing this mapping can yield insights into how neural activity appears in fMRI and MEG for
similar neural concepts.

In order to visualize the loadings, we ran kCCA using the full brain fMRI data and the source
localized MEG data. We utilized all available examples since no cross-validation is required
and plotted the loading weights onto a 3D brain model using the MNE software. The four most
dominant loadings were considered in Figure (5.10).

93



We found that several of the first four learned loadings exhibit spatial correlations in the
temporal and frontal lobes, especially in the first and second loadings. This is an interesting result
because kCCA does not consider the geometry of the brain or encourage spatial smoothness when
learning the loadings. Although fMRI and MEG measure very different physical processes, we
do see that both can observe similar activity.

There are also several differences in observed activities between the two modalities. In the
third and fourth fMRI loadings, we see activities in the occipital lobe that do not appear in MEG.
This is likely due to the time window used in the MEG data. We considered the window of
350-450ms post stimulus onset which is typically associated with semantic processing and not
sensory input. In the temporal lobe, we also see activities in the second and third fMRI loadings
that do not appear in the MEG loadings, as well as activities in first and fourth MEG loadings
that do not appear in the fMRI loadings.

5.5 Future Work
From a neural imaging and brain-computer-interface perspective, we believe that augmenting
data from lower resolution scanners with data from high resolution scanners is an interesting
direction for future work. Most of the work in this chapter only focused on features created
by averaging a small interval of the time series data from 350-450ms for MEG/EEG, but other
intervals should be considered as well. The kernelized ridge regression model presented in this
chapter should easily accommodate significantly larger feature sets and it may be possible to
test all time intervals simultaneously, allowing model regularization to automatically choose the
most useful time points.

Although we showed CCA as a potentially useful latent variable model, there may be other
latent variable models that are more effective at transferring knowledge between the different
scanning modalities. One particular idea would be a CCA-like model that includes full time se-
ries data in one view (rather than just temporally averaged features), and non-time series data in
another view. This would create a latent variable model that could potentially transfer informa-
tion more effectively between two datasets, even when they have little temporal relationship.

From a machine learning perspective, we feel that CCA is an important model for transferring
knowledge between learning tasks. Unlike other dimensionality reduction techniques like PCA,
the CCA objective function learns latent variables that are invariant to linear transformations,
allowing a great deal of flexibility when transferring knowledge between tasks. Although linear
transformations are only one particular function class, we believe there may exist other, similar
models to CCA that learn latent variables that are invariant to other transformations. Research
in this direction may lead to a powerful class of models that can learn different types invariant
features, leading to greater abstraction and transfer of knowledge between tasks.

5.6 Conclusion
We experimented with different neuro-imaging datasets and found that it is possible to apply the
zero-shot learning paradigm to lower resolution MEG and EEG data, allowing classification of
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novel concrete words that were omitted from a training set. Although performance was signif-
icantly less accurate than fMRI, it was possible to discriminate between pairs of novel concrete
nouns far above chance, while the harder task of classifying from a set of a thousand words was
only slightly above chance. We also explicitly tested different time windows of the data, and
found that the best performance occurred when the window 300-600 milliseconds (post stimulus
onset) was used. This appears consistent with previous work in semantic priming that observed
activation at 400 milliseconds (post stimulus onset) [Salmelin, 2007]. This activation is often
referred to as the N400 [Kutas and Federmeier, 2011].

While performance using MEG and EEG data was less accurate than fMRI, we found that it
is possible to utilize higher resolution fMRI data from another human subject in order to increase
classification performance of the MEG and EEG data at test time, without additional fMRI ex-
amples. To our knowledge, this is the first time that data from a human subject in one scanner
modality was used to increase classification performance on another human’s data taken from
another scanning modality. This has an important consequence for brain-computer interfaces,
as it shows that a high-resolution, but less practical scanning modality like fMRI can be used to
improve performance of a low-resolution but better form factor scanner like EEG.

5.7 Additional Chapter Remarks
Sample Code

We provide a MATLAB implementation of the kCCA procedure at:
http://www.thoughtrec.com

Additional Acknowledgements

Thanks to Gustavo Sudre who collected and preprocessed the MEG/EEG data and generated the
3D MEG plots. Gustavo, along with Dean Pomerleau, Tom Mitchell, and Geoff Hinton, were all
co-authors on a paper that included many of these results [Palatucci et al., 2011]. Also, to Indra
Rustandi who provided a fast kCCA implementation and guidance on data normalization [Rus-
tandi, 2010], and to David Hardoon for publishing an excellent tutorial about kCCA [Hardoon
et al., 2004].
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Chapter 6

Conclusion

IN this thesis we showed that it is possible for a machine learning classifier to discriminate
classes that were not explicitly included in a training set by leveraging semantic knowledge of
the classes such as their physical or functional attributes. Further, we found it is possible for
the classifier to automatically select the semantic attributes or features that are most useful for a
particular task, minimizing the effort required by a human to precisely define the optimal set of
semantic attributes in advance.

Using this technique, we showed that the semantic properties of concrete nouns are pre-
dictable from the brain activity observed while a person is thinking about those nouns. This
makes it possible to train a machine learning classifier to discriminate concrete nouns that peo-
ple are thinking about, even without explicitly collecting examples of those nouns for a training
set. Further, this allows discrimination of certain nouns that are within the same category with
significantly higher accuracies than previously possible.

While this thesis focused primarily on classification of neural imaging data, many of the
methodologies developed apply more broadly to the field of machine learning and we believe
are very relevant to other application areas. Below we summarize the main conclusions, discuss
their broader impacts, and suggest avenues for future work.

6.1 Summary of Contributions

6.1.1 Thought Recognition using Zero-Shot Learning

We first presented a formalism for a zero-shot learning algorithm known as the semantic output
code classifier. This classifier can predict novel classes that were omitted from a training set by
leveraging a semantic knowledge base that encodes features common to both the novel classes
and the training set. We studied this model in a PAC framework and proved the first formal
guarantee that shows conditions under which this classifier will predict novel classes.

We applied this framework to the task of concrete noun recognition and demonstrated that
we can discriminate concrete nouns that people are thinking about far above the chance level
without any training examples of those nouns. This is an important result for the neural imaging
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community as it shows that using a small amount of training data, it is possible to discriminate a
much larger set of cognitive states, thereby saving significant time and expense when collecting
data from human subjects.

When applied to fMRI data, we showed that the model can discriminate certain nouns that
are within the same category with significantly higher accuracy than previously possible. These
results advance the state-of-the-art in neural decoding and are a promising step towards a large
vocabulary brain-computer interface.

6.1.2 Semantic Feature Selection using Support Vector Ranking
To improve on the usefulness of the zero-shot learning algorithm, we presented a method based
on support vector ranking that is useful for selecting semantic features for a zero-shot learning
algorithm. This lowers the burden of determining the most useful semantic features a priori, and
allows the algorithm to select the most useful features from a much larger set. When applied to
our neural imaging dataset, we selected features related to density and internal structure as well
as shelter qualities of the objects we considered.

Surprisingly, the importance of selecting semantic features decreased as the size of the orig-
inal semantic set increased. Further, our empirical results suggest that a zero-shot learning al-
gorithm that utilizes nearest neighbor is very robust to potentially irrelevant features. Thus, we
found it is far more important to make sure useful features are included in the model, rather than
prevent irrelevant features from being excluded.

We presented an initial theoretical analysis of using nearest neighbor in the zero-shot learning
algorithm. This analysis showed under certain distribution and metric assumptions, the tolerance
for error in the semantic features predictions can grow with the number of features. Our theory
suggests that there is a benefit to using a semantic feature set that is sufficiently large (i.e. more
than fifty semantic features), however we also found there may not be much benefit to using a
semantic feature set that consists of more than few hundred semantic features.

6.1.3 Predicting Neural Activity using Multi-Task Learning
We also studied the inverse of the zero-shot learning model. Specifically, we built a model to
predict brain activity from the semantic features, instead of predicting semantic features from
brain activity. This model is generative in the sense that given the semantic features for a novel
word, it can often predict the brain activity that would be observed in fMRI images collected
from a human subject thinking about the word.

Similar to the zero-shot learning model, we had the problem of choosing the best semantic
features to input into the model. Although the previous Support Vector Ranking approach does
not apply to the generative model, we demonstrated an alternative method that can be used when
predicting brain activity from semantic features. Specifically, we showed how to formulate this
semantic feature selection problem using the multi-task Lasso objective function. In collabora-
tion with statisticians working to develop the first scalable algorithm to solve this objective, we
presented the first case study of a large scale multi-task Lasso problem with thousands of fea-
tures and tasks, and showed how we can automatically learn a useful set of semantic features that
perform as well or better than the handcrafted set of features reported in Mitchell et al. [2008].
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Further, we applied the multi-task Lasso to different regions of interest (ROIs) of the brain, and
reported the set of semantic features that are most useful for predicting activity in that region.

We believe that learning methods that include sparsity constraints provide useful tools for
neuroscientists to test and evaluate theories of cognition. By using fewer assumptions a pri-
ori and allowing the models to choose the most useful features automatically, sparse learning
methods reduce the risk of implicit overfitting, and may lead to more believable results.

6.1.4 Combining Data from Multiple Scanning Modalities

We experimented with different neuro-imaging datasets and found that it is possible to apply the
zero-shot learning paradigm to lower resolution MEG and EEG data, allowing classification of
novel concrete words that were omitted from a training set. Although performance was signif-
icantly less accurate than fMRI, it was possible to discriminate between pairs of novel concrete
nouns far above chance, while the harder task of classifying from a set of a thousand words was
only slightly above chance. We also explicitly tested different time windows of the data, and
found that the best performance occurred when the window 300-600 milliseconds (post stimulus
onset) was used. This appears consistent with previous work in semantic priming that observed
activation at 400 milliseconds (post stimulus onset) [Salmelin, 2007]. This activation is often
referred to as the N400 [Kutas and Federmeier, 2011].

While performance using MEG and EEG data was less accurate than fMRI, we found that it
is possible to utilize higher resolution fMRI data from another human subject in order to increase
classification performance of the MEG and EEG data at test time, without additional fMRI ex-
amples. To our knowledge, this is the first time that data from a human subject in one scanner
modality was used to increase classification performance on another human’s data taken from
another scanning modality. This has an important consequence for brain-computer interfaces,
as it shows that a high-resolution, but less practical scanning modality like fMRI can be used to
improve performance of a low-resolution but better form factor scanner like EEG.

6.2 Software Contributions

We provide sample code for all the methodologies described in this thesis including kernel ridge
regression with efficient cross-validation, support vector ranking, multi-task Lasso, MTL-GUI,
and kernel canonical correlation analysis.
The code can be downloaded from: http://www.thoughtrec.com

6.3 Future Work

We now summarize avenues for future work in both machine learning and also neuro-imaging.
In machine learning, we suggest additional ways to extend the zero-shot learning model and
also describe other domains where the model is useful. In neuro-imaging, we suggest additional
experiments to classify different parts of speech, and ways to classify data across modalities.
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6.3.1 Thought Recognition using Zero-Shot Learning

We found in our zero-shot learning experiments in Chapter 2 that the largest improvement in
classifier accuracy resulted from using the human labeled semantic features (human218) rather
than those generated from corpus statistics (corpus5000). While the human218 semantic
feature set performed reasonably well, additional work should explore what other semantic fea-
tures could be classified accurately. For example, features related more to function or purpose
should be explored in greater depth.

Future work should also explore classifying words that are not concrete nouns, such as ad-
jectives, verbs, and also more abstract nouns like democracy. If different parts of speech can be
classified, an obvious next goal would be to experiment with classifying phrases or short sen-
tences. This challenging goal will require models that fully utilize the temporal dimension of
neural activity, rather than the simpler single time point features described in this thesis. It is
likely that scanners such as MEG and EEG that better measure the temporal dimension of neural
activity will be required.

Another interesting direction would be to combine the methodologies described here with
other brain-computer-interface techniques like P300 [Donchin et al., 2000]. P300 is a very con-
sistent pattern of neural activation that occurs 300 milliseconds after a thought or perception and
is commonly used as a triggering signal in brain-computer-interfaces [Guger et al., 2011]. To
combine with P300, the zero-shot learning model could be used to narrow word selections down
to a small set of semantically similar choices, while the P300 signal could be used to accurately
make a selection from the small set. We believe the combination of these two techniques may
eventually lead to non-invasive vocal prosthetics. While it may not be possible to decode full
sentences, recognition of even small vocabularies combined with speech synthesis capabilities
may lead to useful applications for the disabled.

Other researchers have explored vocal prosthetics using invasive techniques that measure
firings of small numbers of neurons directly [Brumberg et al., 2010]. Rather than considering
word semantics, these researchers focus on predicting specific phonemes of the desired words.
To our knowledge, exploring invasive techniques for classification of word semantics have not
been explored, and we believe this would be an interesting area for further research. However,
in our own work and also that of Mitchell et al. [2008], we’ve found the neural activity patterns
of semantic processing to be highly distributed, making it difficult to study invasively using the
tiny microarrays commonly used in invasive neural prosthetics [Schwartz, 2004].

For more machine learning oriented researchers, the zero-shot learning paradigm is a rich
area for further study. We believe there are many applications of this model including computer
vision and analogy solving. For example, in computer vision, it has recently been shown that it is
possible to classify certain attributes of objects from images [Lampert et al., 2009, Farhadi et al.,
2009]. Similar to our own work, these papers show that it is possible to classify objects with far
fewer training examples, with Lampert et al. [2009] demonstrating the same zero-shot capability
described in this thesis but in the vision domain.

With regards to analogy solving, we believe one way to solve analogies, such as those used
in standardized tests like the SAT, is to model the relationships between words using crowd-
sourcing tools like Mechanical Turk to generate a semantic feature space that contains both
physical and functional attributes of words. Solving an analogy might be reduced to computing
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distances within this semantic space. Similar work using semantic features based on corpus
statistics is described in Turney [2006, 2008], Veale [2004].

We also feel there are interesting theoretical challenges related to the zero-shot learning
model, from proving performance guarantees under different modeling assumptions, to choosing
optimal coding of semantic information. The choice of optimal semantic code is closely related
to the problem of active learning, which seeks to choose the most useful training examples for
the learning algorithm. This is particularly useful when training examples are difficult to acquire,
which is certainly the case when collecting neural data from fMRI.

Given a particular semantic code, an active learning algorithm could minimize the number
of training examples necessary to predict a particular set of classes. It could also be used to
automatically explore different semantic codes by choosing examples to determine predictability
of certain semantic features.

6.3.2 Semantic Feature Selection using Support Vector Ranking

While we presented one method for selecting semantic features based on support vector ranking,
there are potentially many other metrics that may be useful for the zero-shot learning framework.
The algorithm we presented chooses features that are both predictable, but also useful for dis-
criminating between the various classes. While certainly useful for increasing performance when
using small semantic feature sets, one negative aspect of this method is that it makes model in-
terpretation more difficult because semantic features that may be predictable might not be useful
for discriminating between classes.

As a result, when features are left out of the model, it is not immediately clear whether
it is because they are not predictable, or whether they are just not useful for discriminating
between the classes. It would be interesting to know whether other methods that rely solely on
choosing the most predictable semantic features would perform as well. We suspect that unless
the algorithm uses a small number of semantic features (e.g. less than 50), including all features
that are predicted well may lead to sufficient performance.

In addition, we suspect our current algorithm may not work as well if semantic features
are very highly correlated. This is because the learned weights may be spread across highly
correlated features, and simply ranking the features by learned weight is likely not appropriate.
We performed additional experiments to address this concern by including sparsity constraints
during learning, but we measured no improvement over the method we described. While this
was not problematic for our particular dataset, if may be necessary to adjust the algorithm for
datasets with highly correlated features.

Further, we showed that our zero-shot learning model based on nearest neighbor demon-
strated significant robustness to irrelevant features. We presented a theoretical argument that
claimed that this robustness was a consequence of nearest neighbor being used in the second
stage of the zero-shot learning algorithm. While our analysis only considered uniform distribu-
tions of semantic features under the `∞ metric, it would also be useful to study this robustness
property based on additional metrics and distributions. It would be also useful to know if other
implementations of a zero-shot learner that do not use nearest neighbor also have this robustness
property.
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6.3.3 Predicting Neural Activity using Multi-Task Learning

From a cognitive neuroscience perspective, we believe that learning methods that include sparsity
constraints provide useful tools for neuroscientists to test and evaluate theories of cognition. By
using fewer assumptions a priori and allowing the models to choose the most useful features
automatically, sparse learning methods reduce the risk of implicit overfitting, and may lead to
more believable results. For certain problems, we believe the joint task constraints will lead to
more interpretable models than those that do not combine tasks, but more work needs to be done
to compare models learned from single task data to those that combine data from multiple tasks.
The recent work of Kolar and Xing [2010] is one step in this direction.

From a machine learning perspective, more multi-task learning methods should be evaluated.
Since the original publication of our results in 2009, several other procedures have been pub-
lished relating to multi-task learning using multi-task Lasso `1,∞ regularization norms [Quattoni
et al., 2009] as well as `1,2 norms [Vogt and Roth, 2010]. The work from [Bradley, 2010] pro-
vides a general technique for efficient optimization of different matrix norms in an online setting,
however their approach can only approximately solve problems using the `1,∞ norm because of
differentiability requirements of their current technique.

Little explicit comparison has been done between the different norms, except for Vogt and
Roth [2010] and Bradley [2010] who empirically found that norms close to `1,2 led to better
predictors on several datasets. The work from Bradley [2010] goes further, and also includes
a theoretical regret analysis for the online setting and claims that it is undesirable to use `1,p
norms with p > 2 because of high regret, particularly when tasks are not highly related and
feature weights vary across tasks. The benefit and risk of `1,∞ has also been analyzed recently
by Negahban and Wainwright [2011], which confirms the benefit of this norm requires high
relatedness of tasks.

Despite these works, it is not entirely clear from the literature under what conditions each
norm should be used. In the single-task case, there are subtleties that depend on correlation of
features, as well as whether true sparsity is required [Wainwright, 2009]. For example, many of
these theoretical results guaranteeing recovery of the support set (i.e. the true model features)
are possible using the Lasso `1 norm, but not the ridge regression `2 norm.

We also expect similar subtleties in the multi-task case, and expect that correlation of features,
the number of examples, sparsity rates, as well as task relatedness will affect the appropriate
choice of multi-task norm. From a computational standpoint, the `1,2 regularization norm appears
easier to solve at large scale given the current literature, and existing empirical and theoretical
work supports using the `1,2 as the first approach method as well, especially if all the tasks are
not highly related as is likely in an empirical context. Consistent with the results of Bradley
[2010], Negahban and Wainwright [2011], we believe that the `1,2 norm will be more robust to
violations of the task-relatedness assumption. In fact, in our own work we noticed that the `1,∞
norm tended to squash the learned coefficients between tasks to similar values. This might be a
benefit if the tasks are truly similar. However, we suspect that the `1,2 norm would allow more
variation of a particular feature’s coefficients across tasks, a useful benefit when the tasks are not
very similar. Alternatively, `1,∞ norm might be used only for feature selection, while another
model with less constraints could use the selected features to make the final prediction. In fact,
this is the procedure we used in our experimental section where we used the multi-task Lasso to
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select the features, and a ridge regression to learn the final predictive weights. We suspect this
approach would lead to better performance than a strict `1,∞ model. However, additional work,
both theoretical and empirical, would be very useful to confirm this conjecture and also to fully
understand the subtle effects of multi-task norms.

6.3.4 Combining Data from Multiple Scanning Modalities
From a neural imaging and brain-computer-interface perspective, we believe that augmenting
data from lower resolution scanners with data from high resolution scanners is an interesting
direction for future work. Most of the work in this chapter only focused on features created
by averaging a small interval of the time series data from 350-450ms for MEG/EEG, but other
intervals should be considered as well. The kernelized ridge regression model presented in this
chapter should easily accommodate significantly larger feature sets and it may be possible to
test all time intervals simultaneously, allowing model regularization to automatically choose the
most useful time points.

Although we showed CCA as a potentially useful latent variable model, there may be other
latent variable models that are more effective at transferring knowledge between the different
scanning modalities. One particular idea would be a CCA-like model that includes full time se-
ries data in one view (rather than just temporally averaged features), and non-time series data in
another view. This would create a latent variable model that could potentially transfer informa-
tion more effectively between two datasets, even when they have little temporal relationship.

From a machine learning perspective, we feel that CCA is an important model for transferring
knowledge between learning tasks. Unlike other dimensionality reduction techniques like PCA,
the CCA objective function learns latent variables that are invariant to linear transformations,
allowing a great deal of flexibility when transferring knowledge between tasks. Although linear
transformations are only one particular function class, we believe there may exist other, similar
models to CCA that learn latent variables that are invariant to other transformations. Research
in this direction may lead to a powerful class of models that can learn different types invariant
features, leading to greater abstraction and transfer of knowledge between tasks.
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Appendix A

Derivation of Update Rule for Support
Vector Ranking

We now present the derivation of the support vector ranking update rule presented in Chapter 3.
Our technique mirrors the procedures described in Ratliff et al. [2007] for structured prediction
problems.

Suppose we have a knowledge base of semantic features for N words K = {s∗i }1:N where
s∗i is the “true” semantic vector for word i. Suppose we’ve trained our zero-shot learning model
and get a prediction ŝi for word i from our first stage S(·).

Let f̂ ∗i = (ŝi − s∗i )
2 be the vector whose pth element is the square of the pth element of

(ŝi−s∗i ), the vector of differences between the prediction and the true encoding in the knowledge
base for word i. Similarly, let f̂ ji = (ŝi − s∗j)

2 be the vector of squared distances when the
prediction for i is compared with the true encoding for word j.

We can formulate our learning algorithm as a constrained optimization problem. We learn a
vector of weights w that we’ll use to compute a weighted sum of prediction errors:

Objective:

arg min
w

1

2
||w||2

Subject to:

wT f̂ ∗i ≤ minj 6=i[w
T f̂ ji ]− 1

... repeat for each word i in training set

Intuitively, the idea behind this formulation is that we want the smallest weight vector w,
such that the weighted sum of squared-errors (a.k.a the distance) between the predicted features
and true semantic encoding for a given word, wT f̂ ∗i , is less than that for any other word in the
knowledge base of N examples, minj 6=i[wT f̂

j
i ]. However, we want there to be some margin as

well, so we subtract an arbitrary number (the number 1 is commonly chosen in the support vector
machine literature as it only affects the relative magnitude of the weight vector). We repeat this
set of constraints for every word in the training set. Further, we do not require this to be a hard
constraint, so we add a slackness term ξi that must be greater than or equal to zero, to make it
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easier to find a solution:

Objective:

arg min
w

1

2
||w||2 + λ

N∑
i=1

ξi

Subject to:

wT f̂ ∗i ≤ minj 6=i[w
T f̂ ji ]− 1 + ξi

... repeat for each word i in training set
ξi ≥ 0 ∀i, 1..N

where λ ≥ 0 controls our tolerance to margin violations through the slackness variables. Note
that for each constraint:

wT f̂ ∗i −minj 6=i[wT f̂
j
i ] + 1 ≤ ξi

Since ξi ≥ 0, the constraints are tight, meaning that if wT f̂ ∗i −minj 6=i[wT f̂
j
i ] + 1 ≥ 0, then at

the optimal weight w:
wT f̂ ∗i −minj 6=i[wT f̂

j
i ] + 1 = ξi

This is true because increasing ξi beyond wT f̂ ∗i − minj 6=i[w
T f̂ ji ] + 1 would only increase the

objective. Similarly, if wT f̂ ∗i − minj 6=i[wT f̂
j
i ] + 1 < 0 then ξi = 0 as no slackness is needed

because the margin is not violated. As a result, minimizing the constrained problem above is
equivalent to minimizing the unconstrained problem:

arg min
w

1

2
||w||2 + λ

N∑
i=1

max
[
0, wT f̂ ∗i −minj 6=i[wT f̂

j
i ] + 1

]
(A.1)

To see this, note that if the margin is not violated, we can’t make the objective smaller through
ξi since it is already 0. In this case, we can only make it smaller by shrinking the weight vector
w. If the margin is violated, then we have a tight constraint for the reasons stated above, and
minimizing ξi with respect to w is the same as minimizing

[
wT f̂ ∗i − minj 6=i[w

T f̂ ji ] + 1
]

with
respect to w.

We account for these scenarios using the max operator. Similar to the structure prediction
problem described in Ratliff et al. [2007], we’ll use stochastic sub-gradient descent to optimize
(A.1) for w. The sub-gradient method deals with the discontinuity of the max operator, while the
stochastic form uses one example at a time, rather than summing all examples at once. See Shor
[1985], Ratliff et al. [2007] for a discussion of this optimization technique.

We will now compute the sub-gradient of (A.1) to determine the online update rule for w.
We use the ternary operator “?” where [(condition) ? A : B] means [if (condition) then A else
B], to represent the conditions of the sub-gradient:

∇
[1
2
||w||2 + λ ·max

[
0, wT f̂ ∗i −minj 6=i[wT f̂

j
i ] + 1

]]
= w +[

(wT f̂ ∗i −minj 6=i[wT f̂
j
i ] < −1) ? 0 : λ(f̂ ∗i −minj 6=i[f̂

j
i ])
]
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Which then leads to the update rule with learning rate η and regularization parameter λ:

j = argmink 6=i[w
T f̂ki ]

w ← w −
η
[
w +

[
(wT f̂ ∗i − wT f̂

j
i < −1) ? 0 : λ(f̂ ∗i − f̂

j
i )
]]
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Appendix B

Correctness Proof of the Blockwise
Coordinate Descent Algorithm for Solving
the Multi-task Lasso

The correctness of the blockwise descent algorithm presented in Chapter 4 (Figure 4.4) was
proved by Han Liu in our ICML paper [Liu et al., 2009a]. Although the proof is highly technical,
we include it here for completeness.

Theorem 2. Let α(k)
j as defined in (4.4) and order the indices according to |α(k1)

j | ≥ |α
(k2)
j | ≥

. . . ≥ |α(kK)
j |. Then the solution to (4.3) is

β̂
(ki)
j =

sign(α
(ki)
j )

m∗

[
m∗∑
i′=1

|α(ki′ )
j |−λ

]
+

·1{i≤m∗}+α(ki)
j ·1{i>m∗}

where m∗ = arg max
m

1

m

(
m∑
i′=1

|α(ki′ )
j | − λ

)
, 1{·} is the indicator function, and [·]+ denotes the

positive part.
Proof: The proof proceeds by discussing several cases separately: (i) All the elements in the

sup-norm are zeros; (ii) One unique element in the sup-norm achieves the maximum; (iii) At least
two elements in the sup-norm achieve the maximum. These cases correspond to Propositions 7,
8, and 10 respectively. Given these key points, the technical details can be safely ignored without
affecting the flow. We put the whole technical details here to ease the review.

Since the given objective function in (4.3) is convex, its solution can be characterized by the
Karush-Kuhn-Tucker conditions as the following(

R
(k)
j − β̂

(k)
j X

(k)
j

)T
X

(k)
j = ληk ∀k ∈ {1, . . . , K}, (B.1)

where {ηk}Kk=1 satisfy η ≡ (η1, . . . , ηK)T ∈ ∂‖ · ‖∞
∣∣
βj

. Here, ∂‖ · ‖∞
∣∣
βj

denotes the subdiffer-
ential of the convex functional ‖ · ‖∞ evaluated at βj , it lies in a K-dimensional Euclidean space.
Next, the following proposition from Rockafellar and Wets [1998] can be used to characterize
the subdifferential of sup-norms.
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Lemma 5. The subdifferential of ‖ · ‖∞ in RK is

∂‖ · ‖∞
∣∣
x
=

{
{η : ‖η‖1 ≤ 1} x = 0

conv{sign(xi)ei : |xi| = ‖x‖∞} o.w.
(B.2)

where conv(A) denotes the convex hull, and ei is the i-th canonical unit vector in RK .

Proposition 6. Consider the solutions β̂(k)
j to (4.3) and the corresponding α

(k)
j as defined in

Theorem 2, if β̂(k)
j 6= 0, then sign(β̂

(k)
j ) = sign(α

(k)
j ).

Proof to Proposition 6: Since β̂(k)
j 6= 0, the result trivially follows from the convexity and

continuity of the objective function in (4.3). �
Firstly, we consider the case that

∑K
k=1 |α

(k)
j | ≤ λ and show that 0 must be a solution.

Proposition 7. β̂j = 0 if and only if
K∑
k=1

|α(k)
j | ≤ λ.

Proof to Proposition 7: From (B.1), we know that β̂j = 0 if and only if ∃η1, . . . , ηK such that∑K
k=1 |ηk| ≤ 1 and

ηk =
R

(k)
j

T
X

(k)
j

λ
=
α

(k)
j

λ
. (B.3)

If
∑K

k=1 |α
(k)
j | ≤ λ, choosing ηk as in (B.3) would guarantee that

∑K
k=1 |ηk| ≤ 1, therefore

β̂j = 0.
On the other hand, If β̂j = 0, from (B.3), we know that ληk = α

(k)
j , k = 1, . . . , K and∑K

k=1 |ηk| ≤ 1. This implies that
∑K

k=1 |α
(k)
j | ≤ λ. �

Next, we consider the case that
∑K

k=1 |α
(k)
j | > λ and |α(k1)

j |−λ > |α
(k2)
j |. Here we show that

β̂
(k)
j = α

(k)
j for ∀k 6= k1, while β̂(k1)

j = sign
(
α

(k1)
j

) [
|α(k1)
j | − λ

]
.

Proposition 8. |β̂(k1)
j | > |β̂

(k)
j | for ∀k 6= k1 if and only if |α(k1)

j | − λ > |α
(k2)
j |.

Proof to Proposition 8: If |β̂(k1)
j | > |β̂

(k)
j | for ∀k 6= k1, this implies that ∂‖ · ‖∞

∣∣
βj

= ek1 ,
where ek1 is the k1-th canonical vector. Therefore, from (B.1),(

R
(k)
j − β̂

(k)
j X

(k)
j

)T
X

(k)
j =

{
λsign(β̂

(k1)
j ) if k = k1

0 o.w.

From the above we know β̂
(k1)
j = α

(k1)
j − λsign(β̂

(k1)
j ) and β̂(k)

j = α
(k)
j for ∀k 6= k1. Combined

with the fact |β̂(k1)
j | > |β̂

(k)
j | for ∀k 6= k1 , we get

|α(k1)
j − λsign(β̂

(k1)
j )| > |α(k)

j | for ∀k 6= k1.

From Proposition 6, we have sign(α
(k1)
j ) = sign(β̂

(k1)
j ). Further, if β̂(k1)

j > 0, then |α(k1)
j | > λ,

we have |α(k1)
j − λsign(α

(k1)
j )| = |α(k1)

j | − λ. Therefore, |α(k1)
j | − λ > |α

(k2)
j |. This is also true

for β̂(k1)
j < 0.
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On the other hand, assuming |α(k1)
j | − λ > |α

(k2)
j | but for some n > 1, there exist

|β̂(k1)
j | = . . . = |β̂(kn)

j | = ‖β̂j‖∞. (B.4)

Then, by (B.2), there must exist two nonnegative numbers a1, a2 ∈ [0, 1] and a1 + a2 ≤ 1. From
(B.1), we have (

R
(k1)
j − β̂(k1)

j X
(k1)
j

)T
X

(k1)
j = λa1sign(β̂

(k1)
j )(

R
(k2)
j − β̂(k2)

j X
(k2)
j

)T
X

(k2)
j = λa2sign(β̂

(k2)
j ).

From these two equations and (B.4), we get

|α(k1)
j − λa1sign(β̂

(k1)
j )| = |α(k2)

j − λa2sign(β̂
(k2)
j )|

By Proposition 6 and |α(k1)
j |>λa1, we have |α(k1)

j − λa1sign(β̂
(k1)
j )| = |α(k1)

j | − λa1. If |α(k2)
j | >

λa2, we get |α(k1)
j | − λ

(
sign(a1β̂

(k1)
j ) + a2sign(β̂

(k2)
j )

)
= |α(k2)

j |. Since a1 + a2 ≤ 1, this

obviously contradicts with the assumption that |α(k1)
j | − λ > |α

(k2)
j |. The same result also hold

for the case |α(k2)
j | ≤ λa2. �

Lastly, for the case
∑K

k=1 |α
(k)
j | > λ and |α(k1)

j | − λ ≤ |α(k2)
j |. We start with an auxiliary

proposition.

Proposition 9. For m > 1, if there are precisely m entries |β̂(k1)
j |, . . . , |β̂

(km)
j | achieve ‖β̂j‖∞ >

0, then

β̂
(ki)
j =

sign(α
(ki)
j )

m

[
m∑
`=1

|α(k`)
j | − λ

]
∀i = 1, . . . ,m.

Proof to Proposition 9: Since exactly m entries |β̂(k1)
j |, . . . , |β̂

(km)
j | achieve ‖β̂j‖∞ > 0 , by

(B.2), there must exist m nonnegative numbers a1, . . . , am, such that
∑m

`=1 a` = 1 and for each
` ∈ {1, . . . ,m} (

R
(k`)
j − β̂(k`)

j X
(k`)
j

)T
X

(k`)
j = λa`sign(β̂

(k`)
j ).

Which can be re-written as

α
(k`)
j = λa`sign(β̂

(k`)
j ) + β̂

(k`)
j ∀` ∈ {1, . . . ,m}. (B.5)

Using the fact that |β̂(k1)
j | = . . . = |β̂(km)

j |, summing over the absolute value of both sides
of all the equations in (B.5), we obtain

∑m
`=1 |α

(k`)
j | =

∑m
`=1 |λa`sign(β̂

(k`)
j ) + β̂

(k`)
j |. Since

|λa`sign(β̂
(k`)
j ) + β̂

(k`)
j | = λa` + |β̂(k`)

j | and
∑m

`=1 a` = 1, we have

|β̂(ki)
j | =

1

m

[
m∑
`=1

|α(ki)
j | − λ

]
. ∀i ∈ {1, . . . ,m}. (B.6)
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Finally, by Proposition 6, we know that sign(α
(ki)
j ) = sign(β̂

(ki)
j ) for i = 1, . . . ,m, therefore

β̂
(ki)
j =

sign(α
(ki)
j )

m

[
m∑
`=1

|α(k`)
j | − λ

]
i = 1, . . . ,m. �

To finish the proof of Theorem 2, we still need to describe the exact conditions that there are
exactly m > 1 elements that achieve the sup-norm. This is given in the following Proposition
10. A similar result was also given in Fornasier and Rauhut [2008] under a more general linear
inverse problem framework.

Proposition 10. For m > 1, there exist precisely m entries |β̂(k1)
j |, . . . , |β̂

(km)
j | that achieve

‖β̂j‖∞ > 0 if and only if |α(k1)
j | − λ ≤ |α(k2)

j | and |α(km)
j | ≥ 1

m−1

(∑m−1
`=1 |α

(k`)
j | − λ

)
and

|α(km+1)
j | < 1

m

(∑m
`=1 |α

(k`)
j | − λ

)
.

Proof to Proposition 10: Assume exactly m > 1 entries |β̂(k1)
j |, . . . , |β̂

(km)
j | achieve ‖β̂j‖∞ >

0, from Proposition 9, we know that for i = 1, . . . ,m,

β̂
(ki)
j =

sign(α
(ki)
j )

m

[
m∑
`=1

|α(k`)
j | − λ

]
. (B.7)

By (B.5) and Proposition 6, we have

a` =
α

(k`)
j − β̂(k`)

j

λsign(β̂
(k`)
j )

=
|α(k`)
j | − |β̂

(k`)
j |

λ
` ∈ {1, . . . ,m}.

Plugging (B.7) into am, since am ≥ 0, we get

|α(km)
j | ≥ 1

m− 1

(
m−1∑
`=1

|α(k`)
j | − λ

)
. (B.8)

Further, since |β̂(km)
j | > |β̂(km+1)

j |, the necessity follows from |α(km+1)
j | = |β̂(km+1)

j | <
|β̂(km)
j | = 1

m

[∑m
`=1 |α

(k`)
j | − λ

]
.

For the sufficiency, we assume that precisely n 6= m entries |β̂(k1)
j |, . . . , |β̂

(kn)
j | achieve

‖β̂j‖∞ > 0, then follow exactly the same argument as the necessity part to obtain a contra-
diction. �

To prove Theorem 2, we know from Proposition 10 there are precisely m∗ entries in β̂j that

achieve ‖β̂j‖∞ > 0 if and only if m∗ = arg maxm
1
m

(∑m
`=1 |α

(k`)
j | − λ

)
. The result follows by

combining Propositions 7 and 8.

Remark 11. We conducted experiments to quantitatively compare the performance of the block-
wise coordinate descent algorithm with the Log-barrier interior-point method in a similar setting
as in Friedman et al. [2007b]. Although we do not report the simulation details here, we found
the blockwise coordinate descent algorithm to be significantly faster.
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The complexity analysis of the algorithm is straightforward. Within the main loop, the most
expensive step is sorting the K elements, which can be done in O(K logK). This makes the
algorithm scalable to very large number of tasks. From the Winsorization operator, we do not
need to update a block if

∑K
k=1 |α

(k)
j | ≤ λ, which happens frequently if the problem is sparse.

This makes the algorithm scalable to very large number of features. Furthermore, since many
quantities can be pre-calculated, the algorithm can be also applied to large sample datasets. The
numerical convergence of this algorithm is summarized in the following theorem.

Theorem 3. The solution sequence generated by the blockwise coordinate descent algorithm in
Figure 4.4 is bounded and every cluster point is a solution of the multi-task Lasso defined in
(4.2).

Proof The optimization objective function in (4.2) is continuous on a compact level set, and
is convex (but not strictly convex) and nondifferentiable. Furthermore, notice that the nondif-
ferentiable part λ

∑p
j=1 ‖βj‖∞ is separable, i.e. it can be decomposed into a sum of individual

functions, one for each block of variables. By Theorem 4.1 in Tseng [2001] we obtain the
claimed results. �
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Appendix C

The Human218 Semantic Features

IS IT AN ANIMAL? IS IT A BODY PART?
IS IT A BUILDING? IS IT A BUILDING PART?
IS IT CLOTHING? IS IT FURNITURE?
IS IT AN INSECT? IS IT A KITCHEN ITEM?
IS IT MANMADE? IS ONE MORE THAN ONE COLORED?
CAN YOU EAT IT? IS IT A VEHICLE?
IS IT A PERSON? IS IT A VEGETABLE / PLANT?
IS IT MADE OF METAL? IS IT A FRUIT?
IS IT MADE OF PLASTIC? IS PART OF IT MADE OF GLASS?
IS IT MADE OF WOOD? IS IT SHINY?
CAN YOU SEE THROUGH IT? IS IT COLORFUL?
DOES IT CHANGE COLOR? IS IT A TOOL?
IS IT ALWAYS THE SAME COLOR(S)? IS IT WHITE?
IS IT RED? IS IT ORANGE?
IS IT FLESH-COLORED? IS IT YELLOW?
IS IT GREEN? IS IT BLUE?
IS IT SILVER? IS IT BROWN?
IS IT BLACK? IS IT CURVED?
IS IT STRAIGHT? DOES IT HAVE A FRONT AND A BACK?
IS IT FLAT? DOES IT HAVE A FLAT / STRAIGHT TOP?
IS IT LONG? DOES IT HAVE FLAT / STRAIGHT SIDES?
IS TALLER THAN IT IS WIDE/LONG? IS IT TAPERED?
IS IT POINTED / SHARP? IS IT ROUND?
DOES IT HAVE CORNERS? IS IT SYMMETRICAL?
IS IT HAIRY? IS IT FUZZY?
IS IT CLEAR? IS IT SMOOTH?

...
...
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IS IT SLIPPERY? CAN IT CHANGE SHAPE?
IS IT DENSE? CAN IT STRETCH?
DOES IT HAVE MOVING PARTS? IS IT FRAGILE?
DOES IT HAVE PARTS? CAN IT BREAK?
DOES IT COME IN PAIRS? DOES IT OPEN?
DOES IT COME IN A BUNCH/PACK? IS IT ALIVE?
DOES IT LIVE IN GROUPS? IS IT HOLLOW?
IS IT PART OF SOMETHING LARGER? IS IT SOFT?
DOES IT CONTAIN SOMETHING ELSE? IS IT HEAVY?
DOES IT HAVE INTERNAL STRUCTURE? CAN IT BEND?
DOES IT HAVE A HARD INSIDE? IS IT LIGHTWEIGHT?
DOES IT HAVE A HARD OUTER SHELL? DOES IT GROW?
DOES IT HAVE AT LEAST ONE HOLE? WAS IT EVER ALIVE?
IS IT A SPECIFIC GENDER? IS IT MANUFACTURED?
IS IT SMALLER THAN A GOLFBALL? WAS IT AROUND 100 YEARS AGO?
ARE THERE MANY VARIETIES OF IT? DOES IT COME IN DIFFERENT SIZES?
WAS IT INVENTED? IS IT BIGGER THAN A LOAF OF BREAD?
IS IT BIGGER THAN A MICROWAVE OVEN? IS IT BIGGER THAN A BED?
IS IT BIGGER THAN A CAR? IS IT BIGGER THAN A HOUSE?
IS IT TALLER THAN A PERSON? DOES IT HAVE A TAIL?
DOES IT HAVE LEGS? DOES IT HAVE FOUR LEGS?
DOES IT HAVE FEET? DOES IT HAVE PAWS?
DOES IT HAVE CLAWS? DOES IT HAVE HORNS / SPIKES?
DOES IT HAVE HOOVES? DOES IT HAVE A FACE?
DOES IT HAVE A BACKBONE? DOES IT HAVE WINGS?
DOES IT HAVE EARS? DOES IT HAVE ROOTS?
DOES IT HAVE SEEDS? DOES IT HAVE LEAVES?
DOES IT COME FROM A PLANT? DOES IT HAVE FEATHERS?
DOES IT HAVE SOME SORT OF NOSE? DOES IT HAVE A HARD NOSE/BEAK?
DOES IT CONTAIN LIQUID? DOES IT HAVE WIRES OR A CORD?
DOES IT HAVE WRITING ON IT? DOES IT HAVE WHEELS?
DOES IT MAKE A SOUND? DOES IT MAKE A NICE SOUND?
DOES IT MAKE SOUND CONTINUOUSLY? CAN IT RUN?
DOES IT ROLL? IS ITS JOB TO MAKE SOUNDS?
IS IT FAST? CAN IT FLY?
CAN IT JUMP? CAN IT FLOAT?
CAN IT SWIM? CAN IT DIG?
CAN IT CLIMB TREES? CAN IT CAUSE YOU PAIN?
CAN IT BITE OR STING? DOES IT STAND ON TWO LEGS?
IS IT WILD? IS IT A HERBIVORE?
IS IT A PREDATOR? IS IT WARM BLOODED?

...
...
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IS IT A MAMMAL? IS IT NOCTURNAL?
DOES IT LAY EGGS? IS IT CONSCIOUS?
DOES IT HAVE FEELINGS? IS IT SMART?
IS IT MECHANICAL? IS IT ELECTRONIC?
DOES IT USE ELECTRICITY? CAN IT KEEP YOU DRY?
DOES IT PROVIDE PROTECTION? DOES IT PROVIDE SHADE?
DOES IT CAST A SHADOW? DO YOU SEE IT DAILY?
IS IT HELPFUL? DO YOU INTERACT WITH IT?
CAN YOU TOUCH IT? WOULD YOU AVOID TOUCHING IT?
CAN YOU HOLD IT? CAN YOU HOLD IT IN ONE HAND?
DO YOU HOLD IT TO USE IT? CAN YOU PLAY IT?
CAN YOU PLAY WITH IT? CAN YOU PET IT?
CAN YOU USE IT? DO YOU USE IT DAILY?
CAN YOU USE IT UP? DO YOU USE IT WHEN COOKING?
IS IT USED TO CARRY THINGS? CAN YOU PICK IT UP?
CAN YOU CONTROL IT? CAN YOU SIT ON IT?
CAN YOU RIDE ON/IN IT? IS IT USED FOR TRANSPORTATION?
COULD YOU FIT INSIDE IT? IS IT USED IN SPORTS?
DO YOU WEAR IT? CAN IT BE WASHED?
IS IT COLD? IS IT COOL?
IS IT WARM? IS IT HOT?
IS IT UNHEALTHY? IS IT HARD TO CATCH?
CAN YOU PEEL IT? CAN YOU WALK ON IT?
CAN YOU SWITCH IT ON AND OFF? CAN IT BE EASILY MOVED?
DO YOU DRINK FROM IT? DOES IT GO IN YOUR MOUTH?
IS IT TASTY? IS IT USED DURING MEALS?
DOES IT HAVE A STRONG SMELL? DOES IT SMELL GOOD?
WOULD YOU FIND IT IN A LANDFILL? IS IT RARE?
IS IT USUALLY OUTSIDE? WOULD YOU FIND IT ON A FARM?
WOULD YOU FIND IT IN A SCHOOL? WOULD YOU FIND IT IN A ZOO?
WOULD YOU FIND IT IN AN OFFICE? WOULD YOU FIND IT IN A RESTAURANT?
WOULD YOU FIND IN THE BATHROOM? WOULD YOU FIND IT IN A HOUSE?
WOULD YOU FIND IT NEAR A ROAD? DOES IT SMELL BAD?
WOULD YOU FIND IT IN THE FOREST? WOULD YOU FIND IT IN A GARDEN?
WOULD YOU FIND IT IN THE SKY? DO YOU FIND IT IN SPACE?
DOES IT LIVE ABOVE GROUND? DOES IT GET WET?
DOES IT LIVE IN WATER? CAN IT LIVE OUT OF WATER?
DO YOU TAKE CARE OF IT? DOES IT MAKE YOU HAPPY?
DO YOU LOVE IT? WOULD YOU MISS IT IF IT WERE GONE?
IS IT SCARY? IS IT DANGEROUS?
IS IT FRIENDLY? IS IT USUALLY INSIDE?
CAN YOU BUY IT? IS IT VALUABLE?
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